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Synopsis 
A cell model for the prediction of temperature and concentration gradients in a non- 

isothermal tubular polymerization reactor at steady state is presented. Both radial 
and longitudinal gradients are considered. The complete molecular weight distribution 
is calculated as well as the leading moments of the distribution. The model is easily 
reduced to predict the performance of a plug-flow tubular reactor, batch reactor, and 
continuous stirred tank reactor (CSTIL). The specific polymerization mechanism 
application consists of free-radical initiation, propagation, and combination termination. 

INTRODUCTION 

A large number of papers have appeared in recent years concerning the 
prediction of reactor performance when a polymerization reaction is in- 
volved. Most have been concerned with either a batch reactor or con- 
tinuous stirred tank reactor (CSTR) a t  steady state. A consideration of 
polymerization in a continuous tubular reactor as well as noniosthermal 
polymerization reactors of any type have been rare.1,2 Continuous reac- 
tors are normally preferred over batch operation from the standpoint of 
process flexibility and uniform quality. A nonagitatcd tubular type can 
be used when slurries are not involved. Nonisothermal operation is the 
rule rather than the exception with the isothermal case being an ideal limit 
only for most commercial processes. 

The approach to modeling a polymerization reactor usually involves a 
number of simplifying assumptions due to the enormous complexities in- 
volved. The most common assumptions have been the use of moments to 
characterize the polymer molecular weight distribution and the incorpora- 
tion of the pseudosteady-state assumption (PSSA) when a termination 
reaction is involved. The use of moments greatly eases the computational 
burdens but may be inadequate when attempting to relate polymer proper- 
ties to the molecular weight distribution. Thus, the complete molecular 
weight distribution is preferred. The pseudosteady-state assumption 
states that the rate of change of concentration of all propagating species 
in a reaction system which includes both initiation and termination may 
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be assumed to be zero. While again resulting in mathematical simplifica- 
tion, there is some controversy concerning the validity. 

The mathematical model for a nonisothermal tubular reactor consists of 
conservation equations which are usually formulated as differential equa- 
tions. Due to the highly nonlinear form of these equations, the solution 
procedure normally involves a finite difference scheme followed by solution 
of the resulting algebraic equations. A cell model, as an alternate to the 
differential model for tubular reactors, has been ~ s e d . ~ - ~  For this model, 
it is assumed that the flow process in a single vessel can be described by 
flow through a series of perfectly mixed cells. For the steady-state system, 
this method reduces the equation system to a set of algebraic equations 
equivalent to a particular form of finite difference equations required in a 
numerical solution for a differential model. The major advantage in the 
cell model approach is the retention of physical significance in the actual 
solution equations. Boundary conditions are usually simplified, and 
reduction of the reactor model to other types is possible. 

It is the objective of this paper to present a computationally efficient cell 
model of a nonisothermal, tubular polymerization reactor at steady state 
with radial and longitudinal gradients. An addition polymerization 
mechanism consisting of initiation, propagation, and combination termina- 
tion will be used as the example. Reductions of the model system to 
other reactor types will also be illustrated. 

THE EQUATION SYSTEM 

A schematic representation of the cell model of a tubular reactor is shown 
in Figure 1. The mathematical model consists of component mass and 
energy balances for each cell. Assumptions which will be utilized include 
the following: (1) the reactor is a t  steady state, ( 2 )  the reactor is a cylin- 
drical tube, (3) there is no mass or heat transfer a t  the inlet or outlet of the 
reactor through diffusion or conduction, and (4) kinetic and potential 
energy effects are negligible. 

Conservation Equations 

A balance for either component mass or energy for cell ( j , k )  may be 

(1) 

(2 )  

(3) 

written as 

F z , i , i . k - 1  + F r . i . j - 1 . k  - F Z . i , j , k  + F r , t . j . k  + R * i , j , k  = 0. 

F z , i , j , k  = G * z , j . r  + J . z , t , j , k  

F r , t , j , t  = G * r , i , k  + J r , t , j , k .  

The flow terms F include both bulk and diffusion or dispersion effects, 

and 

For the component mass balance, G* is equal to the product of the total 
mass flow rate G and the component mass fraction. For the energy balance, 
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Fig. 1. Representation of the radial diffusion model. 

G* is the product of the total mass flow rate and stream enthalpy H .  The 
dispersion term J is assumed to be proportional to the driving force differ- 
ence between adjacent cells, 

J z , i , j , k  = a z , i , j , k ( X i , j , k  - X i . j , k + l )  

J r , i , j , k  = % , f . j . k ( X t . J , k  - X i , j + 1 d ,  

(4) 

(5) 

where X is the component mass fraction for the component mass balance 
and the cell temperature for the energy balance. The source term R* in 
eq. (1) is defined for the component mass balance as the rate of appearance 
of the component, 

R * i , j , k  = M t V j , k  c V t , l R I . k . 1  (6) 
2 

where M i  is the component molecular weight, V is the cell volume, v is a 
reaction stochiometric coefficient, and R is the intrinsic rate of reaction. 
The summation is over all independent reactions. For the energy balance, 

R * i . j , k  = - v j , k  c R f , k , l ~ j , k . l  (7) 
1 

where AH is the heat of reaction. Equations (1) through (7) represent the 
conservation equations necessary to model a tubular reactor at steady state 
with both axial and radial dispersion effects included. Reductions of this 
model system for various model types (axial diffusion, radial diffusion, 
plug flow, batch, CSTR) and boundary conditions are given in Appendix I. 
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Polymerization Reaction Application 
L 

A major fraction of commercial polymers is produeEd by free-radical 
polymerization in cither bulk or solution. The chcmkal mechanism for 
such systems may be described by initiation, propagation, and trrmination 
reactions : 

l d  

I + 2n1- Z L ~  (8) 

(9) 

(10) 

kP 
L, + ;\I - L,+1, n = 1,2,. . ., m 

n,m = 1,2,. . . , m 
A t  

L, + L, - D, 

where I is the initiator, RI is the monomer, L is the live polymer, and D is 
the dead polymcr. The rate constants for the propagation and termination 
steps, k, and k, ,  arc assumrd to be independent of chain length. Assuming 
irreversibility, the intrinsic rate equations for cach reaction type arc as 
follows : 

R, = k d I 1  (11) 

R, = k,[L,][M] 

Rt = kl[L,I[L,I (13) 

where f is an cxpcrimentally dctermincd factor describing the efficiency of 
the reaction, and [i] are the componcnt concentrations. 

The reaction scheme represented by eqs. (11) through (13) may now be 
applicd to a spccific reactor model reprcscntrd by eqs. (1) through (7) or a 
reduction thereof. For any model, thc systrm is rcprcsrntcd by an infinite 
number of coupled nonlinear algebraic equations. The mass fraction 
values in cqs. (1) through (7) are related to the componcnt concentrations 
in (11) through (13) by 

Nufiber-average (M, )  and weight average (M,)  molecular weights are 
obtained from the total polymer concentrations [P,] and monomer molec- 
ular weight (Mo) as follows: 

m 
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SOLUTION STRATEGY 
Solution proced\;res for the various reactor models will now bc presented. 

The axial diffusion model will not be considered for two reasons: (1) 
axial diffusion effects are minor for most tubular reactor applications, and 
(2) it has been shown4 that a judicious choice of the cell length allows 
axial dispersion to be accounted for in the cell model. 

Radial Diffusion Model Solution 
The radial diffusion model requires relations for the effective transport 

parameters. 
1. Radial Velocity Profile. The velocity profile is assumed to be 

constant throughout the reactor with the form dependent on the initial 
Reynolds number (NR,). For NR, greater than lo4, the following profile6 
was assumed: 

The relations are as follows. 

u, = (u,) (S) [l - (31’’ (17) 

For NRe less than 2100, the following laminar, Newtonian profile6 is as- 
sumed : 

u, = ‘2 (u,) [ 1 - (31. 
At intermediate Reynolds numbers, a linear interpolation between the two 
profiles was assumed to be sufficient. 

2. Effective Diffusion Coefficient. For N R ,  greater than 2100, the 
mass diffusivity E ,  was assumed to be related to the Prandtl mixing length 
and equal to the eddy diffusivity of mass; for NR, less than 2100, the mass 
diffusivity was assumed to be equal to  the individual molecular diffusivity. 
The eddy diffusivity of mass is given by Knudsen and Iiatz’: 

In  order to translate this into an effective diffusivity as defined in Appen- 
dix I, the following calculation is made: 

3. Effective Conduction Coefficient. For N R ~  greater than 2100, the 
conductivity was assumed to be equal to the eddy heat diffusivity; for NR, 
less than 2100, the conductivity was assumed to be equal to  the conductivity 
of the Auid without mixing. The eddy heat diffusivity as given by 
Knudsen and Katz7 is equal to  the eddy mass diffusivity. Thus, 

= Em. (21) 

$ r , j , k  = c p m  Y r . f , k .  (22) 

The effective conductivity as defined in Appendix I is obtained by 
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Fig. 2.  Procedure for the calculation of radial profiles. 

4. Wall Heat Transfer. The heat transferred at  the n.all of the reactor 
u-as assumed to be proportional to  a wall heat transfer coefficient and the 
temperature difference between the fluid in the wall cell and the reactor 
wall. A constant wall temperature was assumed. The wall heat transfer 
coefficients were estimated from correlations given in RIcCabe and Smith.8 

The solution of the two-dimensional radial model may be broken down 
into three solution blocks (see Fig. 2). The three blocks will be discussed 
separately in terms of the necessary inputs to each and the resulting con- 
tribution of each block to the overall solution scheme. 

The overall solution for a tubular polymerization reactor proceeds by 
stepping in the axial direction one column of cells a t  a time (see Fig. 1).  
The complete profile for all the cells in a column is calculated before moving 
to the next axial position. The first calculations made at  some axial dis- 
tance 2 are those described by Block One. The inputs needed for Block 
One are the profiles from the preceding column of cells for [I], [MI, [ L T ] ,  
and T. The output will be the final profiles for the column of cells under 
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consideration. This result requires the simultaneous solution of 4M 
algebraic equations where M is the number of cells in the radial direction. 
Thc equations necessary are mass conservation equations for each cell for 
[RI], [I], and [LT] and an energy balance for each cell. The conservation 
equations for [R'I] and [I] and the energy balance are given in Appendix I 
with the rate terms defined by cqs. (11) through (13). The balance for 
[LT] is derived by the summation of the live species equations (L,) over all 
n, n = 1 + 03. The result for cell j ,lc is 

[L~l?,k-lGj + L I j - 1 , t  ~ ~ ~ 9 - 1  h + [ L l j , i .  ( - G j  - YL.?-I,~. 

- Y L . j , h  - PT v ? , k  k f , j , k  [LTI?,i.) + [LT13+l ,k Y L . i , b  

+ 2 PT V J , k  ~ C d , L k . f ? , k  [I],,, = 0. (23) 

Since this set of 461 equations is nonlinear, an itrrative solution is rc- 
quired. A first-order Newton-Raphson technique was chosen for computa- 
tional efficiency. If good starting guesses are known, as happens in the 
reactor marching procedure, thrn the Newton-Raphson tcchniquc will 
rapidly coverage to the eorrcct answers. This solution procedure can be 
described by the following steps: (1) Set up Krwton-Raphson equations 
by setting the mass and encrgy balance cxprcssions equal to functions 
ft 3 , h .  ( 2 )  Use a first-ordrr Taylor scrics expansion of the functions about 
estimates of the unknowns in the form 

where i may taken on forms of [I], [ A l l ,  [PT], and T; and * denotm use of 
current estimates for evaluation. (3) This expansion results in a set of 
linear algebraic equations in terms of the crror estimates for the unknowns; 
thcsc may be solved for the error estimates. (4) New estimates may bc 
made for the independent variables. (5) Thc process (1) through (4) is 
repeated until the magnitudr of the calculatcd crror is less than some preset 
limit. 

The coefficient matrix for the linrar equations consists of a band of partial 
dcrivativcs. Because of thc large number of zeros encountered in this 
matrix, a banded matrix solution procedure rmploying a Gaussian elimina- 
tion algorithm was u t i l i z ~ d . ~  A forward difference numerical scheme was 
employed to calculate the matrix of partial derivatives. When the con- 
vergence criterion is satisfied, Block Two calculations are commenced. 

The Block Two calculations involve the calculation of live polymer, L,, 
profiles. The calculation of the concentration profiles for live polymer of 
chain length one, L1, is madc by a tridiagonal banded matrix solution of 
equations since the only unknown is thc L1 profile and thc cquations are 
linear with respect to L1. The complete profile could be calculated in a 
similar manner to that used for L1; however, this is undesirable because of 
the huge number of individual components which must be considered. In  
general, such a technique would require a separate equation set solution of 
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4M equations for each L,, where n, the chain length, may be significant for 
values up to 20,000 for typical polymers. The approach is also undesirable 
since the 4M profiles would have to be saved in order to calculate the pro- 
files for the next set of cells in the axial direction. For these two reasons it 
was necessary to use another approach for the calculation of the live poly- 
mers for chain lengths greater than 1. 

It was assumed that the live polymer concentration could be represented 
by a continuous function of the chain length.1° This continuous variable 
approach reduces the infinite number of algebraic equations for each cell 
involving the live polymer species to  one linear ordinary differential equa- 
tion for each cell with chain length as the independent variable. If L(n) 
is a continuous function representing the L, concentration profile, then a 
first-order Taylor series expansion of L(n) about some chain length n yields 

dL(n) L(n) - L(n - An) 
- 

dn An 

If An is chosen to equal 1, then the component mass balance for L, for 
column k becomes 

- YL.)  - PTV~JC~,~[LTI~) L ( 4 ,  + Y L . ~  L(n),+l + G, Lo(%),. (26) 
The equations arc a linear set of first-order ordinary differential equations 
and may be solvcd by thc matrix solution procedure described in Appendix 
11. The eigenvalues and eigcnvectors required for the procedure were 
found by using a program which cmploycd the method of Rutishauser.l' 

The Block Three calculations, which arc dependent on the current live 
polymer concentration profiles, may now be performed. The function 
form of Lo(n) must bc known to obtain a general solution of the equations. 
Therefore, an appropriate function form was chosen to characterize the 
chain length dependence of the concentration profiles. The form obtained 
for an analytical solution of this reaction mechanism carried out in a CSTR 
was chosen: 

Un), = a3 exp (@An - 1)) .  (27) 

This form has two arbitrary constants, a5 and p3. These constants were 
estimated using a least-squares fit of values of L(n) as a function of n cal- 
culated in Block Two. Error estimates from this fit were calculated and 
the fit was assumed to be adequate. This fit was not only used in the cal- 
culation of the next group of L(n) profiles, but also in the calculation of the 
dead polymer concentration profiles, [D,]. 

The dead polymer concentration calculation, see eq. (13), depends on sums 
of the following form: 

n-1 c [ L - m l  L L I .  (28) 
m = l  
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If these sums were calculated in a direct manner using the results from 
Block Two, an excessive amount of computer time would be required. 
Therefore, a modified Euler-Rlaclaurin summation formula12 was used : 

n-1  

m = l  1 
c [L,,] I L ~ I  = Jn-’ ~ ( n  - m) L(m) dm. (29) 

Since the form of L(n) is known, the integral in eq. (29) can be easily evalu- 
ated and incorporated into the dead polymer calculations. Thus, values of 
the dead polymer concentrations could be stored at selected chain length 
intervals. To further reduce the direct calculation of summations re- 
quired for moment calculations, these dead polymer profiles were also 
fitted to an equation whose form was assumed by the results of a CSTR 
solution. The form involved two more constants which were also esti- 
mated using a least-squares approach : 

D ( R ) ~  = aj’ exp (Pj’ (n - 2)) (n - 1). (30) 

This result in conjunction with the live polymer result was used to calculate 
the moments of the total polymer distribution using Euler-Maclaurin sum- 
mation formula approximations : 

m 

The final output for each column of cells at a fixed axial position includes 
the following: (1) values for [I], [MI, [LT], and T; (2) values of the live 
polymer concentrations; (3) curve-fit parameters which mathematically 
describe the live polymer profile; (4) values for the dead polymer concentra- 
tion profile; (5) curve-fit parameters which mathematically describe the 
dead polymer profile; and (6) moments to describe the polymer molecular 
weight distribution curves. The axial index is then incremented and the 
calculations repeated for the desired length of reactor. 

Plug-Flow Model Solution 
The plug-flow reactor follows the same solution procedure presented for 

the radial diffusion model using the mass and energy balance equations 
without diffusion and conduction terms as described in Appendix I. The 
plug-flow reactor model also assumes a constant velocity profile over the 
reactor radius. Therefore, the reactor is represented by a set of CSTR’s 
in series in the axial direction. Thus, Block One (Fig. 2) involves the 
Newton-Raphson solution of four coupled nonlinear algebraic equations. 
Block Two reduces to the solution of a single linear algebraic equation for 
[LI] and the solution of a single linear ordinary differential equation for the 
remaining live polymer profile; and Block Three reduces to dead and total 
polymer profile and moment calculations for a single cell. 

The relationship of the isothermal batch reactor model to the isothermal 
plug flow reactor model is as follows: 

[tlbateh = [~/(G/PTT@’) ]plug f low.  (32) 
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This relationship allows the plug-flow model to predict isothermal batch 
reactor behavior. 

CSTR Model Solution 

Further reduction of the radial model to one cell in both the axial and 
radial directions allows the two-dimensional model to collapse to a CSTR 
model. The conservation equations thus obtained could be solved in the 
manner described for the radial model. However, a more versatile and 
efficient computational technique was employed. The Newton-Raphson 
scheme of the radial procedure is replaced by the method of f i i l a r q ~ a r d t ~ ~ . ~ ~  
to calculate values of [ A l l ,  [I], [LT] ,  and T for the CSTR model. The 
method of Alarquardt has advantages in terms of solution stability. These 
advantages are discussed by llarquardt. l3 Although the method of 
Rilarquardt would be more time consuming than a Newton-Raphson proce- 
dure, in general, one would expect the Rlarquardt procedure to be superior 
to the Newton-Raphson procedure when poor initial estimates of the un- 
knowns are available, as in a CSTR solution. This nonlinear algebraic 
equation solution was followed by an analytical calculation of the live and 
dead polymer distributions. The reduced complexity of the equation sys- 
tem for the CSTR allowed the moments of the total polymer distribution 
to be calculated by direct summation. 

BATCH AND CSTR REACTORS 

Tubular polymerization reactor experimental studies reporting molecular 
weight distributions do not appear to exist in the literature. Hamielec and 
c o - ~ o r k e r s * ~ ~ ' ~  have polymerized styrene in isothermal batch and CSTR 

2 
2 Chain L e n g t h  x 10- 

Fig. 3. Molecular weight distribution prediction for a batch reactor. Reactor condi- 
tions: [ I 1 0  = 0.032, [nillo = 0.1530, TO = 348"K, residence time = 1 hr. 
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0 
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Fig. 4. Molecular weight distribution prediction for a CSTR. Reactor conditions: 
[I]O = 0.00066, [MI0 = 0.300, To = 337"K, residence time = 2.80 hr. 

systems using azobisisobutyronitrile (AIBN) as the initiator and benzene as 
the solvent and analyzed the product with a gel permeation chromatograph 
for molecular weight distribution. Thus, to check the performance of the 
cell model, reductions to the batch and CSTR cases were tested. A de- 
scription of the reactors and rate constant data are summarized in the 
original articles. The match 
appears reasonable, subject to the stated mechanism and assumptions. 
Improvements might be possible with a consideration of chain transfer 
reactions and inclusion of the "gel effect" relating initiator effciency and the 
termination rate constant to solution viscosity. l7 

Typical results are shown in Figures 3 and 4. 

TUBULAR REACTOR SIMULATION 
The styrene monomer system with AIBN initiator and benzene solvent 

was again used to test the reactor model for a radial diffusion tubular re- 
actor. For the examples illustrated, 
the heat of propagation and mixture heat capacity were held constant a t  
-29,800 Btu/lb mole and 0.79 Btu/lb mass-OK, respectively. Inlet con- 
centrations were 0.00319 lb moles/ft3 for the initiator and 0.304 lb/moles/ft3 
for monomer. The radial thickness of the cells was chosen to ensure equal 
volumes in each cell. I n  each case, temperature, average degrees of poly- 
merization, and polymer molecular weight divided by repeat unit molecular 

Results are shown in Figures 5-8. 

Fig. 
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weight (DP, and DP,), are shown as a function of radial position at selected 
reactor lengths. The molecular weight values move in the opposite direc- 
tion to that of the temperature profiles. The ratio M,/M,,  often used a 
an indication of the breadth of the molecular weight distribution, is es- 
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.-.-.I 
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1 r / R  
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Fig. 6. Radial profiles for a radial diffusion model. Reactor conditions: R = 0.75 ft, 
radial cells = 5, h, = 100, N R ~  = 2200, (0) = 70, TO = 360°K, T, = 300'K. 
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Fig. 7. Radial profiles for a radial diffusion model. Reactor conditions: R = 0.25 ft, 
radial cells = 10, h, = 150, N R ~  = 1330, (v)  = 100, TO = 30OoK, T, = 338°K. 

z = 12 ft. Z = 60 ft. 

radial cells = 5, h, = 100, NR, = 3700, (v) = 120, TO = 360"K, T, = 338°K. 
Fig. 8. Radial profiles for a radial ditiusion model. Reactor Conditions: R = 0.75 ft, 
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sentially const,ant (-1.5). Inclusion of viscosity effects (important at 
high conversions) and/or chain transfer reactions would be required to alter 
this response. All examples show appreciable radial profiles except Figure 
8 where the advanced distance down the reactor has flattened the profiles. 

COMPUTATIONAL EXPERIENCE 
Computational time requirements were dependent on the particular 

reactor model and conditions under study. Typical runs using the batch- 
plug flow and CSTR models (Figs. 3 and 4) could be accomplished in less 
than 20 sec execution time on the UNIVAC 1110 and CDC 6400 computers. 
Execution times for the radial gradient tubular model runs varied from 
about 20 sec for a “mild” condition run (e.g., Fig. 8) to several minutes for 
more severe conditions. 

The effect of transport and kinetic parameters, operating conditions, and 
solution parameters (cell sizes, numerical convergence limits, etc.) on pre- 
dicted results were explored with the various models. A complete discus- 
sion is beyond the scope of this presentation. With regard to solution 
parameters, the axial cell dimension for the radial gradient tubular model 
was the most critical. Thus, for conditions resulting in severe profiles, a 
larger number of cells (and thus increased computational time) in the axial 
direction were required to achieve numerical stability. The computational 
procedure was less sensitive to the cell geometry in the radial direction. 

CONCLUSIONS 
A computationally efficient model and solution procedure have been pre- 

sented to tackle the formidable task of solving a polymerization reactor sys- 
tem represented by an infinite system of nonlinear partial differential equa- 
tions for the radial diffusion continuous model. Reductions to other re- 
actor systems (batch, CSTR, tubular plug flow) is easily accomplished. 
Extensions of the model to other polymerization reaction systems should be 
possible. 

Appendix I 

Reactor Model Summary 
This appendix includes a summary of the conservation equations derived in the 

Equation System section ILS applied to the following reactor models: (A) CSTR, (B) 
tubular axial diffusion, (C) tubular radial diffusion, (D) tubular plug flow, and (E) 
batch. 

A. CSTR 
1. Component Mass  Balance 

GXi” - GXi + Mi vi.rR~V = 0 (AI-1) 
2 

2. l k e r g y  Balance 

GCp,To - GC,,T - V RtAHz + wall effects = 0. (AI-2) 
1 
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B. AXIAL DIFFUSION TUBULAR REACTOR (Assume C,, is constant) 

1. Component Mass Balances 
a. Initial Cell 

GXio + X i , l ( - G  - 7i .1)  + X i , 2 ~ i , 1  + M i  C v i . l R I . Z V 1  = 0. (AI-3) 
1 

b. General Cell 

X i . k - I ( G  + Ti ,&-I )  + X i , k ( - G  - Y i , k - l  - Ti.&) + X i , k + l Y i . k  + M i  C Y ; , l R & , z V k  = 0. 
1 

(AI-4) 

c.  Last Cell (cell N )  

X<,N-I(G + Y i , N - I )  + X ~ , N ( - G  - Y I . N - I )  + M i  C Y~.ZRN,ZVN = 0. (AI-5) 
1 '  

2. Energy Balances 
a. Initial Cell 

TOG Cpm + TI( -G Cpm - $1) + TZ$I - V 1  C R 1 . d H I . l  + wall effects = 0. (AI-6) 
1 

b. General Cell 

T k - l ( G  C p m  $k- l )  + T k ( - G  C p m  - $k-I - $ k )  + Tk+l$k  - V k  C R k , Z A H k . z  
1 

+ wall effects = 0. (AI-7) 
c. Last Cell (cell N )  

T N - I ( G C , ~  + $ N - I )  + TN(-GC,, - $,v-l) - V N  c RN.IAHN, I  + wall effects = 0. 
1 

(AI-8) 

C. RADIAL DIFFUSION TUBULAR REACTOR (Assume no bulk flow in the 
radial direction) 

1. Component Mass Balances 
a. Wall Cell (cell M )  

X i . M . k - I G M , k - l  + Xi .M-1 .kYi .M-1 .k  + X i . M , k ( - G M . k  - Y i , M - l , k )  

+ M i  C vi.ZRMM.LSlVM.k = 0. (AI-9) 
1 

b. General Cell 

x i , j , k - l G j , k - 1  f X i . j - l , k Y i , j - l . k  + X i . j . k ( - G j , k  - Y i , j - l , k  - 7 i . j . k )  + X i . j + l , k Y i . j . k  

M i  C V i 1 2 R j l k , Z ~ j l k  = 0. (AI-10) 
1 

c. Center Cell 

Xi,1,&1G1,k-1 + X i , l , k ( - G 1 , k  - Ti .1 .k )  + X i . 2 , k Y i . l . k  f M i  c Yi.ZRl.k.ZV1.k = 0. (AI-11) 
1 

2. 
a. Wall Cell (cell M )  

Energy Balances (assume C,, is constant and G k  = G L I )  

T M , k - i G M  cpm + T M - i , k $ M - i , k  f T M , k ( - G M  cpm - $ M - I , & )  + Wall effects 

- V M . k  R M , k . z A H M , k  = 0. (AI-12) 
1 
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b. General Cell 

T3.k-1 GI C p m  + T>-1 ,kd ' -1 ,k  f T,.k(-G, C p m  - $ ~ , - l . k  - $ ' j ,k )  + T~+i.k'&l.k 
- V , . k  R , .k , lAH, .k  = 0. (AI-13) 

2 

c. Center Cell 

TIJ-I GI cpm + Ti,k(-Gi Cpm - + T z , k J / l , k  - V1.k Ri ,k . lAHi ,k  = 0. (AI-14) 
1 

D. PLUG FLOW REACTOR 

1. Component Mass Balance 

X,.k-iG + X , d - G )  + M ,  C v,.&.rVk = 0. ( AI- 1 5 )  
2 

2. Energy Balance (Assume C,, is constant) 

T k - 1  G cp, + Tk(-G cpm) - v k  C R k . i A H k  + wall effects = 0. (AI-16) 
2 

E. BATCH (Assume isothermal) 

Same as plug-flow component mass balance using the following independent variable 
translation : 

It1 bstch = [z PT rRz/'G1 Plug flow. 

Appendix I1 

Matrix Solution Equations 
The continuous variable assumption transforms the M infinite sets of coupled alge- 

braic equations for M coupled cells to a set of M first-order, linear, nonhomogeneous, 
ordinary differential equations of the following form: 

da = cl,,L(n),-l + Cz,,L(n), + C3.,IJ(n),+l + f , (n) (AII-1) 
dn 

where the j subscript refers to the cell number in the radial direction. 
If the system is put into matrix form, the result is 

L'(n) = CL (n) + F(n) (AII-2) 
where 

L'(n) = , an M x 1 matrix 

L(n) = , an M x 1 matrix 

(AII-3) 

(AII-4) 
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(AII-5) 

an M X M matrix; and 

The form of F(n) is dictated by the particular form assumed for the live polymer dis- 
tribution in the cell. 

The solution to eq. (AII-2) can be obtained as follows'*: 

(AII-7) 1 L(n) = KeA(n-l)K-lL(l) + KeAn [l e-AnK-lF(n) dn 

where A and K are matrices of the eigenvalues and eigenvectors of the C matrix. 
form of the solution is particularly useful. 
in general be easily disposed of by a term by term integration. 

This 
If the form F(n) is known, the integral may 

Notation 
mean heat capacity of the reacting mixture (Btu/lb mass-OK) 
dead polymer of chain length n 
continuous function of the dead polymer concentration distribu- 

concentration of dead polymer of chain length n (lb moles/ft3) 
number average degree of polymerization 
weight average degree of polymerization 
flow rate of component i in lb mass/hr or energy flow rate in 

Btu/hr out of cellj, k 
effciency factor for thc initiation reaction 
Newton-Raphson function 
total mass flow rate (lb mass/hr) out of cell j , k ;  also bulk flow 

in generalized conservation equation 
enthalpy in cell j , k  (Btu/lb mass) 
heat of reaction 1 in cell j , k  (Btu/lb mole) 
wall heat transfer coefficient (Btu/ft2-hr-" K) 
denotes initiator 
denotes concentration of component i in lb moles i/ft3 
used in the Newton-Raphson procedure to denote the difference 

between current values of i ,  i*, and predicted values of i; Ai = 
i* - i 

tion (lb moles/ft3) 
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dispersion term for component mass and energy flow out of cell j , k  
reaction rate constant 
live polymer of chain length n 
continuous function of the live polymer concentration distribution 

concentration in lb moles/ft3 of live polymer of chain length n 

total live polymer concentration 

denotes monomer 
molecular weight of component i 
number-average molecular weight 
weight-average molecular weight 
Reynolds number 
number of monomer units in the chain length 
total polymer concentration of chain length n (lb moles/ft3) = 

inside reactor radius (ft) 
rate of reaction 1 in cell j , k  (lb moles/hr-ft3); also designates 

radial distance (ft) 
temperature of cell j ,k (OK) 
time in hours 
volume of cell j , k  (ft3) 
velocity (ft/hr) 
average tube velocity (ft/hr) 
mass fraction of component i in cellj, k; also designates dependent 

axial distance (ft) 

(lb moles/ft3) 

m 

[L,] (lb moles/ft3) 
n = l  

[Lnl + [ D n l  

source term in generalized conservation equation 

variable in generalized conservation equation 

Greek Letters 
dispersion coefficient in generalized conservation equation 
curve fit constants 
effective mass diffusion coefficient of component i out of cell 

j ,k  (lb mass/hr) 
mass diffusivity (ft2/hr) 
heat conductivity (ft2/hr) 
mth polymer moment about the origin 
stoichiometric coefficient of component i in reaction 1 
effective heat conduction coefficient for heat transfer from cell 

j ,k (Btu/hr-OK) 
fluid density (lb/ft3) 

Subscripts 
d refers to initiation reaction 
i refers to a component 
j refers to the radial cell number 
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k 
I refers to a reaction 
TL 

p 
r 
w refers to reactor wall 
z 

Superscripts 
* indicates evaluation of the expression a t  the current Newton-Raphson 

value; also designates source term and bulk flow terms in generalized 
conservation equation 
indicates an initial or inlet condition for a reactor 

refers to the axial cell number 

refers to the number of monomer units in a polymer chain 
refers to the propagation reaction 
refers to the radial direction 

refers to the axial direction 

0 
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